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Executive Summary
Mapping global electricity access with high 
spatial and temporal resolution is a technically 
challenging task. In a world without constraints 
on resources and with limits on the feasibility 
of execution, a high-frequency door-to-door 
census of all households would provide current, 
accurate and precise estimates of electricity 
access, including nuances on source and 
reliability. However, this is not technically feasible 
given current technologies and methods. What 
is available are infrequent surveys and remote 
sensing data.

Two methods are used to map electricity access 
globally: survey-based approaches to mapping 
electricity access; and use of satellite data to 
generate electricity access mapping.

Current survey-based methods tend to be 
sporadic, logistically complex and resource/ 
intensive. The World Bank’s Multi-Tier Framework 
(MTF) effort offers a way to systematize survey-
based approaches to measuring electricity 
access. 

Methods based on remote sensing data from 
satellites offer higher spatial and temporal 
resolution with unique technical challenges in 
terms of data processing and inference.

The value addition of United Nations 
Development Programme’s (UNDP) work on 
mapping electricity access is its system that 
provides public access to high quality electricity 
access data at a high spatial and temporal 
resolution. Two methods were used to generate 
electricity access estimates: high-resolution 
electricity access and machine-learning 
estimation of electrification.

With the right institutional collaboration, the effort 
to map global electricity access can be made far 
more systematic. This entails bringing resources 
that enable the production of regular, high-
resolution and globally harmonized estimates 
of electricity access. Some of the cutting-edge 
efforts are ad hoc and sporadic, often led by 
small academic and research teams, which can 
be leveraged by providing more resources and 
enabling them to grow.
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Introduction
Electricity plays a key role in development as 
it fundamentally changes the development 
trajectory and range of possibilities for the 
poor. Evidence at the country level suggests 
substantial, long-term macroeconomic benefits 
of electrification (Stern et al., 2019). There is, 
however, a need to enrich this analysis with 
the impact of electricity quality (reliability and 
infrastructure). Microeconomic analyses attest to 
the benefits of electrification in multiple domains, 
especially in the developing world (Lee, Miguel 
and Wolfram, 2017). These include positive 
impacts on health, poverty, and employment 
opportunities. Electricity access, for instance, 
is especially important for respiratory health 
as electrification can offset combustion-based 
heating and cooking indoors (Barron and Torero, 
2017). Electrification also has direct impacts 
on poverty and increases household welfare: 
multiple studies demonstrate gains in income 
and consumption especially for rural households 
in developing countries (Chakravorty, Emerick, 
and Ravago, 2016; Khandker, Barnes and 
Samad, 2012; Khandker et al., 2014; Lipscomb, 
Mobarak and Barham,2013; Van de Walle et 
al., 2017). Electrification is associated with 
increased employment, especially for women 
(Dinkelman, 2011; Grogan and Sadanand, 2013), 
and electricity access has been shown to 
improve education-related outcomes (Hassan 
and Lucchino, 2016).

The number of people worldwide with access to 
electricity has increased in recent decades: from 
an estimated 71 percent in 1990 to 87 percent 
in 2016 (Ritchie and Roser, 2020). Globally, 759 
million people lack access to electricity (IEA et 
al., 2021). While the number of people without 
access to electricity has steadily declined, 
the rate is too slow to achieve Sustainable 
Development Goal (SDG) 7 (Ritchie and Roser, 
2020). 

It is important for social and economic 
development that initiatives to provide electricity 
access are ramped up. UNDP has embarked 
on an ambitious plan to provide access to 500 
million people by 2025: its Energy Compact 
pledges to work with partners to provide 
access to clean and affordable energy to 500 
million additional people, focusing on the most 
vulnerable communities. Many related policy 
efforts will result in reaching this milestone, 
including building policy support, mobilizing 
funds and building supply. One key element to 
enable all of this will be targeting. To halve the 
population without access to electricity by 2030, 
it is important to know where they are – both 
locally (within countries) and globally (across 
countries and regions).

To help address this challenge, UNDP has 
created an interactive global visualization of 
electricity access at the local level that allows 
users to track progress on electrification over 
time. The visualization provides users with an 
immediate estimate of the level of electricity 
access for any specified period and geography. 
Users can specify the level of spatial granularity, 
i.e., the visualization provides data at the 
subnational and global levels. There is also a 
repository for electricity access data with which 
users can generate trends for electricity access 
over time, enabling them to track progress.

Mapping global electricity access is challenging, 
and there are multiple ways to approach it.  The 
objective of this report is to review different 
methodologies to map electricity access, 
describe global efforts to generate these data, 
and identify strengths and weaknesses of these 
approaches for policymaking. The report also 
describes in detail two approaches for mapping 
electricity access, which will be important to 
target and monitor effectively the commitment 
to electrify 500 million people. Finally, it presents 
conclusions based on lessons learned from this 
work.
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Electricity mapping
Mapping global electricity access with high 
spatial and temporal resolution is a technically 
challenging task. In a world without constraints 
on resources and with limits on the feasibility 
of execution, a high-frequency, door-to-door 
census of all households in the world would 
provide current, accurate and precise estimates 
of electricity access, including nuances on 
source and reliability. However, this is not 
technically feasible given current technologies 
and methods. What is available are infrequent 
surveys and remote sensing data.

Survey-based approaches to 
mapping electricity access
In 2010, the United Nations Secretary General 
launched the Sustainable Energy for All (SEforAll) 
initiative, a multilateral partnership to support 
global efforts to ensure universal access to 
modern energy services. Its annual tracking 
reports provide the most comprehensive data 
on electricity access rates for countries around 
the world, relying on nationally representative 
household surveys including the Demographic 
and Health Surveys (DHSs), Living Standards 
Measurement Surveys (LSMSs), Multi-Indicator 
Cluster Surveys (MICSs), the World Health 
Survey (WHS) and national censuses. Access to 
electricity is not a core subject of these surveys; 
however, in order to provide a binary indicator 
of access, many include modules with questions 
regarding the availability of electricity in 
respondents’ households, or the power source 
used for lighting.

Given that the primary aims of these surveys 
are to study national welfare and obtain health 
measurements, they are low frequency (every 
few years) with limited sub-national and country-
level coverage. Hence, the data available 
from these surveys provide a snapshot of 
electrification for a specific country at a specific 
time and not an up-to-date harmonized global 
picture of electrification.

The Global Electrification Platform (GEP) is a 
publicly accessible source for country-level 
data that systematically utilizes survey data 
on electrification. It was jointly developed by 
The World Bank Group, the Energy Sector 
Management Assistance Program (ESMAP), 
and the KTH Royal Institute of Technology in 
Stockholm. The national electrification use data 
is built on several surveys: from 1990 through 
2019, 1,282 surveys have contributed to the 
estimates available in the GEP.  However, only 
28 percent of countries have updated these 
surveys through annually (IEA et al., 2021). The 
estimates on electrification and associated data 
in the GEP provide a useful, general global 
picture on electrification and progress on SDG 
7. While useful at the macro and global level, 
the estimates that policymakers need to create 
policy at more local levels is not possible from 
this. Additionally, the data contained in the GEP 
have been collected at different times and some 
country estimates are more current than others.

Although based on current methodologies, 
survey-based estimation is sporadic, spatially 
and temporally limited, and is typically not 
updated.  The closest efforts that have come to 
updating estimates in a systematic, regular and 
internationally harmonized manner is through 
the World Bank’s Multi-Tier Framework (MTF) 
initiative. The MTF classifies access along a 
tiered spectrum, from Tier 0 (no access) to Tier 
5 (highest level of access), relying on survey-
based measurement of different modes of 
energy usage, including electricity. At present, 
surveys using the MTF cover 17 countries. The 
framework provides a comprehensive basis 
to assess progress toward SDG 7, as well as a 
detailed measurement of energy consumption 
at the household level. However, it is subject 
to the constraints of survey-based methods 
to measure electrification, namely, given the 
logistical complexity of mounting a survey, low 
frequency.
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Use of satellite data to 
generate electricity access 
mapping
At present, the methods that generate relatively 
accurate access information with high-frequency 
and spatial resolution rely on satellite imagery 
of human settlements and night-time lighting 
(NTL). Although satellite data are relatively low-
cost, with high spatial and temporal resolution, 
it is second-best to survey-based methods in 
estimating electrification because the latter 
consists in directly measuring electricity usage 
by a specific population, whereas satellite data 
infer both electricity usage (proxied through 
nighttime lighting information) and population.

Inferring electricity access from satellite 
night data is non-trivial. Among the technical 
challenges are acquiring and preparing data 
on NTL and human settlements, and correctly 
inferring electricity access from NTL given 
interference from other sources of light such 
as the moon, reflections, gas flares and other 
ambient light. 

Several studies have been pushing the 
technical boundaries to use NTL for inferring 
electricity access (Doll and Pachauri, 2010; 
Dugoua, Kennedy and Urpelainen, 2018; 
Elvidge et al., 2011; Falchetta et al., 2019; Min et 
al., 2013). However, while overcoming technical 
challenges, these studies tend to be limited – 
they are not systematically sustained, often 
limited in geographical scope and are typically 
one-off productions. While the methods 
employed are replicable and can be updated, 
they are not typically updated unless the authors 
have some incentive to do so. Additionally, the 
work is not built for constant update and easy 
public access.

The value addition of UNDP’s work on mapping 
electricity access is a system that provides 
public access to high quality electricity access 
data at a high spatial and temporal resolution. 
Two methods were used to generate electricity 
access estimates: high-resolution electricity 
access (HREA) and machine-learning estimation 
of electrification. 
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High-resolution electricity access
To identify electricity access gaps across 
the world, the HREA project leverages high- 
resolution satellite data to develop estimates 
of electrification, energy use, and power 
supply reliability down to the settlement-level. 
Developed at the University of Michigan, the 
HREA project uses large-scale computational 
analysis of the complete 250-terabyte archive 
of every nighttime light image captured by the 
VIIRS sensor since 2012 in order to generate 
high-resolution temporal light signatures over 
every human-built settlement.

Input data

Nighttime lights

For daily nighttime imagery of the planet, Visible 
Infrared Imaging Radiometer Suite (VIIRS) data 
from the Suomi National Polar Partnership 
(SNPP) satellite in the form of 15 arc-second 
GeoTIFFs spanning the globe each night was 
used. Each image strip has data from two 750 m 
sensors, as well as additional useful metadata. 
The key data, which are in nanowatts/cm2/sr 
,come from the Day/Night Band (DNB), which 
is the visible radiance. The second sensor 
data type is thermal infrared (TIR), which is in 
W/m2/sr/μm. In addition, there is information 
on lunar illumination (LI) measured in lux, the 
sample position, and a quality flag bit, which is 
necessary for sub setting only useful good data 
and discarding data whenever the following are 
detected: clouds, fire, lightning, high energy 
particles, or stray light. Only data that are truly in 
the nighttime zone (solar zenith angle above 101°) 
are kept, and only data with a lunar illumination 
below .001 lux are kept.

Settlements and population

Two primary pieces of information are required 
to generate locally relevant electricity access 
estimates: where people live, and how many 
people live there. The Meta High Resolution 
Settlement Layer (FBHRSL) and the Global 
Human Settlement Layer (GHSL) are used. Both 
products use machine learning to identify built-
up areas based on satellite imagery and fine-
grained census data to interpolate population 
density in these areas.

FBHRSL has higher spatial resolution than the 
GHSL product. The resolution of FBHRSL is 1 
arc-second (about 30 m), while that of GHSL is 
about 8 arc-seconds (250 m). Although a 30-m 
version of GHSL exists, the most recent estimates 
are not available at that level. Since HREA 
has focused on recent years, the 2015 GHSL 
estimates are used. Building and population 
data from Facebook are cover around the same 
time period.

To generate absolute estimates of the numbers 
of electrified vs. unelectrified people in a 
country, the population data are rescaled to 
more accurate estimates for the time period of 
interest using United Nations Department of 
Economic and Social Affairs “World Population 
Prospects” dataset.

Geographic boundaries

The database of Global Administrative Areas 
(GADM) was used for national and subnational-
level administrative boundaries. 
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Land cover

Variations in land cover and their albedo 
(surface reflectance) are important in the 
observed brightness of a given area of the 
planet. The interaction effects of albedo and 
lunar illumination are especially significant. For 
example, both snow and desert sand reflect 
much more light and thus appear brighter 
than forested areas. For this reason, Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
land cover classification data developed by NASA 
were used. Specifically, the MCD12Q1 product 
in the IGBP Land Cover Type Classification was 
used.1

Processed data

Because the VIIRS data have a resolution 
of 15 arc-seconds, a 15 arc-second grid that 
encompasses the country boundary was 
generated and intersected with settlement data. 
In the case of the FBHRSL, 225 of the 1 arc-
second settlement cells can fit into each 15 arc-
second VIIRS cell. While the FBHRSL, VIIRS and 
MODIS data use the WGS 1984 projection, the 
original GHSL data use a Mollweide projection. 
To more cleanly match the GHSL cells to the 15 
arc-second grid, the 250-m GHSL is reprojected 
to 7.5 arc-second WGS84 using bilinear 
interpolation. While a smaller resolution could 
be used, the 7.5 arc-second projection is close 
to the original 250-m resolution (approximately 
8–9 arc-seconds), which reduces having to 
increase the total population count through 
the interpolation process. GHSL cells with 
population values less than two are recoded 
as ‘non-settlement’ cells and are dropped for 
two reasons: (i) the projection process creates 
many small noise artifacts that are likely not 
good indicators of populated areas; and (ii) the 
GHSL, unlike FBHRSL, has occasionally large 
contiguous tracts of barely populated areas that 
do not appear to correspond well to actual built-
up areas. Similar to how the settlement cells 
are matched to the VIIRS cells, VIIRS cells are 
matched to MODIS cells. This is achieved by 

1 2012 global mosaics that were reprojected to approximately 300 arc-second resolution WGS 1984 GeoTIFFs by the Global Land Cover Facility at the 
University of Maryland.

intersecting the centroids of the 15 arc-second 
grid to the 300 arc-second MODIS data. Thus, 
each 15 arc-second grid cell has a corresponding 
land cover type, and each 1 or 7.5 arc-second 
settlement cell has a corresponding VIIRS cell.

Data processing
With data readied, the next step is to process it 
to generate electricity access estimates.

Identifying isolated areas

To determine expected natural background 
radiance, 15 arc-second grid cells that contain 
zero settlement cells, and the eight adjacent 
neighbours of the 15 arc-second grid cells that 
also contain zero settlement cells are selected.

Outlier removal

Next, outliers among non-settlement areas are 
removed, i.e., brightly lit unpopulated areas are 
dropped because they should be dark. These 
places might be unexpectedly light because 
they are roads or gas flares, for example. 
Outlier removal is performed in two steps. First, 
the means and standard deviation of the DNB 
radiance is calculated for each candidate cell. 
Then, by land cover type, the quantiles of the 
means and standard deviations are calculated. 
Cells are only kept if their means and standard 
deviations are between the 1st and the sum of 
the 50th percentile plus the difference between 
the 50th and 1st percentile (this is more robust 
than simply using the 99th percentile as a cutoff, 
since the goal is to omit bright outliers). After 
taking a random sample of each land cover type, 
individual outlier observations are dropped. Any 
nightly observation that is above the median of 
the logged radiance plus four times the standard 
deviation for a given land cover type is removed. 
Thus, a representative sample of actually dark 
places remains.
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Regression

Next, for each calendar year, a linear mixed 
effects model on light output for all pixels in 
areas with no settlements is run,

y=Xβ+Zu+ε

where

• y is a vector of observed radiance

• X is a matrix of observed covariates (lunar 
illumination, time, month, land cover, and 
land cover crossed with lunar illumination

• Z is a vector of observed dates

• β is an unknown vector of fixed effects

• u is an unknown vector of random effects 
with mean 0 and variance G

• ε is an unknown vector of random errors 
with mean 0 and variance R

Below is the formula used for the mixed-effects 
model for the ith isolated non-settlement cell 
observation of the jth date:

Lightij = β0j + β1Lunar Illuminationij + β2Timeij + 
β3Monthij + β4Land Coverij + β5Land Cover X 
Lunar Illuminationij + eij

The model includes observations from a selection 
of isolated non-settlement pixels from all good 
quality nights, and includes fixed controls for 
month, land type, lunar illumination, local time, 
and the interaction between land cover type 
and lunar illumination, as well as a date random 
effect. Using these statistical parameters learned 
from data on non-settlement areas, the expected 
level of light output for all areas with settlements 
is calculated. These predicted values represent 
a counterfactual estimate of how much light 
would be expected on that specific day on that 
type of land, if the only sources of light were 
from background noise and other exogenous 
factors. Areas with higher observed light output 
than expected light output will be assumed to 
have electricity access.

Results
For each settlement, the difference between 
the observed and predicted counterfactual 
DNB radiance is calculated for each night. 
This is divided by the model sigma to create a 
standardized residual. These residuals, which 
are in effect z-scores, are then compared against 
a standard normal distribution to calculate 
the likelihood of the area being electrified in 
different ways. One method is to calculate the 
variability of the light output. To this end, each 
observation of each cell is coded as being lit 
or not based on different thresholds (85, 90, or 
95% confidence), and then a proportion of the 
nights that are observed to be lit is generated. 
A second method is to take the mean of all 
residuals and compare this value against the 
standard normal distribution. If this mean value 
is above some confidence threshold (85, 90, or 
95 percent), it is considered electrified.

These electrification scores can then be used to 
determine the electrification rates by multiplying 
them by the population. The electrification rate 
for a given area is the number of people living 
in electrified settlements divided by the total 
population of that area. Absolute numbers of 
people with or without access can similarly be 
generated by adjusting the populations by the 
estimated total population for that region in the 
given year.
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A sample image has been rendered to showcase 
the output of this process (Figure 1). It shows 
changes in electrification rates within African 
countries from 2012 to 2020 in the graphs on the 
left, as well as a snapshot of the geographical 
distribution of electrification on the continent as 
of 2020 on the right. Areas in blue are those that 
have reliable access to electricity, while areas in 
red represent populated places that lack high 
quality electricity access. The time series graphs 
show that, for the most part, there has been a 
steady upward trend in the percentage of the 
population with access to electricity in most 
countries. As at 2020, it is estimated that around 
645 million people lack reliable electricity access 
in sub-Saharan Africa.

Figure 1. Sample output from HREA showing electricity access for sub-Saharan Africa

Validation
HREA electricity access estimates were validated 
against survey-based metrics of electricity 
access in a given year. HREA estimates of the 
populations of the settlement cells that are 
coded as electrified are summed up and divided 
by the total population of settlement cells within 
a given area. Survey data on access are used to 
generate electrification rate estimates for larger 
geographic units. The intercept and slope of the 
corresponding regression line between HREA 
estimates and survey-based estimates, as well 
as the correlation coefficient, provide a strong 
preliminary test of correspondence.
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Figure 2 compares HREA estimates at the 
country-year level with those produced by 
the World Bank. Each black dot represents a 
country-year observation, of which there are 
804 from 104 countries. World Bank estimates 
are on the x-axis, and HREA estimates are on 
the y-axis. The diagonal blue line is the line of 
best fit through the data. While there are some 
large disagreements, the correlation is strong 
(Pearson’s correlation coefficient is .87).

Figure 2. Country-year observation, represented by black dots, whose size corresponds to population. Note: The red 
line is the line of best fit. Pearson’s correlation coefficient and number of observations reported in the top left.
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Next, sub-national (administrative unit 1, or 
ADM 1) survey estimates of electricity access 
from eleven Demographic and Health Survey 
(DHS) microdata on electricity access and Living 
Standards Surveys were compared to HREA 
estimates for multiple countries across several 
years (Figure 3).2  First, HREA grid cells were 
spatially matched to sub-national regions, and 
the proportion of population with access to 
electricity was calculated. 

Population figures are adjusted using yearly 
country-level estimates from the United Nations. 
This is performed by weighting each settlement 
population by the appropriate weight such that 
the country’s population in that year would equal 
the UN estimate, assuming a constant rate of 
change across the country.

2 The units used are the administrative level 1 (ADM1) units of these countries, the specific name of which (state, region, province, or department) varies 
by country. Administrative level 1 units are the first subnational geographic political unit below the country.

Figure 3. HREA electricity access estimates compared to survey-based estimates 
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The generally consistent methodology of the 
DHS makes it possible for more aggregated 
comparisons. In Figure 4, all DHS estimates at 
the subnational level are plotted against HREA 
estimates. The size of each data marker is 
proportional to the population of the unit, and 
colours correspond to different countries. The 
diagonal black line represents the line of best fit 
through the data. 

Figure 4. Pooled DHS and HREA electricity access comparison.

As can be seen, it closely approximates a 
45-degree line, which would represent perfect 
correspondence. Pearson’s product moment 
correlation is .82, again indicating an excellent 
fit between the remote-sensing based HREA 
measure with the survey-based DHS measures.
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Finally, Figure 5 shows a comparison of HREA 
with the MTF estimates for ADM1 level units in 
Zambia for 2018. MTF is designed to measure 
electricity access; therefore, it is an ideal and 
high-quality external comparison benchmark. 
However, availability of the data at the time of 
writing was limited, so only one comparison – 
Zambia 2018 – was possible. The agreement 
between HREA and MTF estimates are once 
again quite consistent.

Figure 5. HREA estimates compared to MTF estimates for Zambia

Overall, the comparisons of HREA estimates 
and survey-based estimates across a sample 
of different countries, years and survey 
methodologies reveals consistently strong 
correlations. While there are some outliers 
and disagreements in the estimates, these 
appear to be about the same magnitude as the 
disagreements between different surveys. For 
example, the average absolute percentage point 
disagreement between DHS and MTF estimates 
is 7.7 percentage points, while the average 
disagreement with HREA estimates is 8.4–
10.6 percentage points; the average absolute 
percentage point disagreement between DHS 
and Living Standards Measurement Surveys 
(LSS) is 8.3, while it is 11.3–11.8 for HREA 
compared to these other two.
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Machine-learning estimation of electrification
To set up machine-learning estimation of 
electrification (MLEE), two critical pieces of 
information were needed: (i) detection and 
extraction of settlement information from 
satellite images for population density level; and 
(ii) accumulation of information on the level of 
light pollution at night, enabling comparison of 
this information with expected illumination level 
at night. The first piece of information has been 
made available by a number of organizations: 
there is detailed information on population 
density and distribution for many countries 
from 2000 to 2020, with a resolution ranging 
from 100 m2 to 1 km2. Extracting information 
on the level of light pollution from night images 
required development of suitable transformation 
techniques to convert existing population levels 
for specific areas into the expected level of 
illumination at night. Electricity access was 
estimated with information available of light 
pollution and population.

The machine learning approach created a 
model that can be used worldwide without any 
customization for specific countries, i.e., MLEE 
can be applied universally across all countries 
and does not need to be customized for each 
country by changing the parameters of the 
model. The model is trained to use satellite 
images, given that they provide sufficient 
coverage and the level of detail needed for 
accurate outputs. It automatically updates 
electricity access estimates on a monthly basis, 
thus requiring minimal human input. This is a 
useful characteristic in resource and capacity 
constrained settings, as the application will be 
able to function everywhere with no trained staff. 

Electricity access estimates can be produced 
daily, since the model works with standardized 
inputs and the data collected comprise multiple 
daily layers; hence, one can be separated to 
produce daily estimates if needed. The only 

prerequisite for daily updates is to consider 
the weather conditions on a particular day, 
since high cloud coverage (six or more oktas) 
will undermine data extraction. Thus, if weather 
conditions are favourable, the model can be 
consistently updated with a high frequency. 
Overall, the primary advantage of the model 
is that machine learning is utilized to analyse 
data more effectively and discover hidden 
relationships between different layers. This 
allows for more accurate results in a shorter 
period, maximizing the value of the final output, 
i.e. the system produces an interactive map 
highlighting electricity access on a national, 
regional and local scale while also constructing 
a table of values for easier data extraction and 
manipulation.

Moreover, the population layer is not a strict 
requirement for MLEE’s operation, albeit the 
accuracy of the model would be enhanced if it 
is included after initial training. Reduced data 
may include a reduction in the number of optical 
and non-optical layers, as well as a reduction in 
accumulated data (the number of days), and the 
potential removal of the population layer. Due to 
the sophisticated architecture of the system, it 
can work with all types of reduced data, although 
the accuracy may be lower as a result. Also, 
the application can work using limited or noisy 
data, since the system is trained to filter noise 
out to provide the best results. Moreover, the 
MLEE system can use a wide variety of source 
data, i.e., all satellites operating in all resolutions 
can be used with no or extremely limited model 
changes. 

Therefore, the MLEE system supports both 
optical and non-optical bands, which makes it 
an extremely versatile system that can extract 
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data from infrared, radar and optical bands. 
Notably, the system can also utilize optical and 
non-optical bands simultaneously, whereby the 
data are gathered from distinct layers to allow for 
greater accuracy; greater accuracy is ensured by 
verifying values in different layers and looking 
for discrepancies, which are subsequently 
marked as unsuitable if present. A final property 
of MLEE is that over time, with more data to train 
with, the accuracy of the predicted electricity 
access estimates will improve.

Input data
WorldPop was identified as the best data source 
for the population layer, because it provides 
access to data with a resolution of 100 m2 to 1 
km2 (WorldPop). Initially, data from NASA’s Black 
Marble were considered for NTL. However, 
these data are limited to a narrow time range 
(annually accumulated data for 2012 and 2016). 
To overcome these limitations, Light Every 
Night (World Bank Nighttime Light) data were 
used instead, with a large repository of monthly 
data at a high spatial resolution. Finally, country 
border information as well as their sub-national 
divisions were acquired from the Database of 
Global Administrative Areas (GADM).

The MLEE model’s performance and accuracy 
will need to be monitored, with model re-
training using new data only occurring in case of 
performance degradation. Currently, the model 
does not require re-training, because it simply 
finds the most suitable transformation coefficient 
(from light and population to an expected 
electricity access level); these coefficients 
will only be changed if there are significant 
alterations in population structure (such as 
towns growing and expanding to become large 
cities), which will be automatically captured by 
MLEE

3 It worth noting that memory optimization algorithms, such as GDAL Virtual File Systems, have been used to significantly speed up calculations by 
more than 99 percent.

Data processing
Some source data can have certain limitations 
including different band coding (layer 
characteristics), because they are byte-encoded, 
while other data use their own specific data 
format. Therefore, a process was devised to 
avoid source data limitations, with the following 
steps:

• Acquiring population and night illumination 
data from any data sources with different 
resolutions, since all the data are re-scaled 
in the next steps.

• Extracting areas of interest using GADM 
(country and region information), which 
enables scaling-up and accelerating 
the process (enabling the use of a 
computational cluster-based calculation, 
instead of single-machine for this 
calculation).

• Joining night light bands into a single 
layer. Usually, satellites provide multi-band 
data, but subsequent steps of the process 
require one layer. There are a number of 
methodologies to transform RGB-based 
(or any other) layers into a single layer, 
from simple averaging to more complex 
calculations. Simple data averaging for 
visible (RGB) layers was chosen.3 

• Normalizing population and night 
illumination layers using non-linear 
interpolation. This entail dividing the 
population and night light data ranges into 
bands. Then, using a machine learning 
(ML) optimization algorithm called dual 
annealing (Xiang and Gong, 2000; 
Xiang et al., 2013), both layers were 
transformed into normalized datasets. A 
non-linear transformation was used due 
to an extremely wide range of population 
densities compared to the illumination 
level that can be produced. For example, 
an area with a population of a thousand 
people living in 1 km2 can produce almost 
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the same level of illumination as several 
thousand living in 1 km2. Examples of 
transformation functions are shown in 
Figure 6. This algorithm minimizes the 
mean squared error between predicted 
electricity access and a baseline figure 
from a valid source. For this algorithm, 
the World Bank’s country level electricity 
access percentage was used. Finally, 
another machine learning algorithm, the 
Multi-layer Perceptron regressor (Glorot 
and Bengio, 2010, He et al., 2015; Hinton, 
1989; Kingma and Ba, 2014), was created 
and trained to transform normalized layers 
into an electricity access percentage 
number for a specific area.

• Next, the normalized ‘real night light’ 
layer was subtracted from the normalized 
population layer using cell-by-cell 
manipulation (Figure 7). This allows filtering 
out any kind of ‘non-settlement’ lights, 
such as those emitted by gas towers and 
other industrial sites. The result can then 
be interpreted as the proportion of the 
population that has no electricity access.

• Finally, a set of GeoTIFF and database 
tables was produced, which visualizes 
findings in both a static and interactive 
manner.

Figure 6. Transformation function representation. Figure 7. Principle of data transformation 
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Results
An example image that MLEE produces is 
shown in Figure 8. The image shows access 
to electricity in each 1 km2 grid cell for the city 
of Ibadan, Nigeria in 2018. Darker areas show 
that few people have access to electricity, while 
lighter shades show higher access. The colour 
range reflects the proportion of population 
without electricity access ranging from 0 to 
100 percent. Some white points reflect areas 
where almost all persons have access to the 
electricity. To calculate the number of people 
without access, the proportion specified in 
each grid cell needs to be multiplied with the 
population (or population density) in that cell. 
This can be extended to the whole population 
(at the country level) to generate country-level 
electricity access level.

Figure 8. A visualization showing the electricity access 
level for Ibadan, Nigeria
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Validation
The goal of MLEE was to create a universal 
approach to identify electricity access levels, 
regardless of the country or continent in 
question. The model training process finds 
the best coefficients to transform population 
and night light layers into new layers with a 
distribution of values in the range from zero 
to one. When the coefficients have been 
identified, they are applied at the relevant level 
(subnational or national level), and the results 
are then compared to external estimates. The 
first set of estimates at the country-year level are 
compared to data from the World Bank (Figure 9). 
Each dot represents a country-year observation. 
There are a total of 804 observations (red dots) 
from 104 countries. World Bank estimates are 
on the x-axis, and MLEE estimates are on the 
y-axis. The diagonal blue line is the line of best 
fit through the data. The results are promising, 
with a high correlation coefficient of 0.85.

Figure 9. Each dot represents a country/year observation
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Next, using electricity access data for sub-
national levels for specific years from DHS, 
the model was trained to then validate model/
generated estimates, as shown in Figure 10. 
The 45-degree line (blue) is perfect correlation; 
red dots show actual subnational estimates 
from MLEE and DHS. Broadly, the results are 
promising, since the correlation coefficients 
are high, with the exception of Chad. High 
correlation coefficients suggest that MLEE is 
able to predict electricity access estimates that 
are close to DHS estimates.

Figure 10. Validation results for MLEE using subnational estimates from DHS
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These subnational comparisons were also 
conducted using a pooled sample, as shown 
below. The overall correlation coefficient is 
slightly lower at the administrative level 1, likely 
due to variations in the approaches to data 
collection and processing.

Figure 11. Pooled DHS and MLEE electricity access 
comparison

A final comparison was performed with 
subnational data from Zambia MTF 2018 (Figure 
12). The result is encouraging with a high 
correlation coefficient (0.97). MTF is likely a more 
reliable benchmark; thus, a high correlation to 
it is an encouraging sign of the methodological 
validity of MLEE.

Figure 12. MLEE estimates compared to MTF estimates 
for Zambia
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Cross-method comparison

How close are estimates generated by HREA 
and MLEE? To process these kinds of data, they 
are often combined with high-resolution vector 
data that represents, for example in this case, 
the administrative level 1 boundaries. One of the 
common operations that combine big vector and 
the raster data generated by the two methods of 
electricity access estimation is zonal statistics. 
Zonal statistics is a fundamental operation for 
processing the combination of raster and vector 
data to compute aggregate values for each 
subnational level using the values provided by 
the HREA and MLEA data. 

The output is the value of the aggregate function 
when applied to all pixels that overlap with each 
subnational level separately. The aggregate 
function used in this instance is the mean. The 
two electricity access estimation methods were 
compared using results at the same subnational 
level of aggregation (administrative level 1). 
Figure 13 shows a summary of the Pearson 
correlation coefficient for the HREA and MLEE 
against the DHS data.

Figure 13. Pearson correlation coefficient summary for HREA and MLEE vs. DHS
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Table 1 summarizes the Pearson correlation 
coefficient for HREA and MLEE with DHS, in 
addition to the correlation between HREA and 
MLEE. The HREA comparison to the DHS shows 
a high degree of correlation in the nine country-
year data sampled. The MLEE comparison to the 
benchmark shows a high degree of correlation 
in all but one country, Chad, where the degree 
of correlation is very low. Comparing the 
HREA with the MLEE reveals a high degree of 
correlation in all countries but Angola, where 
there is a moderate degree of correlation.

The comparisons generated show that the 
two methods of estimating electricity access 
produce similar results to each other and to the 
external benchmarks, even with their different 
methodologies. While the HREA relies on a 
statistical technique, MLEE relies on machine 
learning-based optimization. Both methods 

Country and year 
HREA-DHS 
correlation 
coefficient

MLEE-DHS 
correlation 
coefficient

HREA-MLEE 
correlation 
coefficient

Angola 2018 0.78 0.98 0.41

Benin 2017 0.87 0.93 0.76

Chad 2014 0.94 0.11 0.60

Ethiopia 2016 0.89 0.89 0.87

Mali 2018 0.87 0.74 0.92

Namibia 2013 0.91 0.80 -0.80

Nigeria 2018 0.87 0.55 -0.71

Zambia 2018 0.97 0.97 0.89

Zimbabwe 2015 0.97 0.96 0.95

Table 1: Summary of Pearson Correlation coefficients with the benchmark

provide credible options for estimating global 
electricity access. With the exception of Chad 
for MLEE, both MLEE and HREA provide high 
correlations with external validation data from the 
DHS. The correlation between HREA and MLEE 
has much more variation, and, in two countries, it 
is a negative relationship. This implies that, while 
both the HREA and MLEE produce relatively 
accurate estimates overall (as suggested when 
compared with an external benchmark), the 
exact subnational estimates of electricity access 
can differ. In the most extreme cases (Namibia 
and Nigeria) subnational estimates of electricity 
access differ substantially so that the correlation 
coefficients are negative.
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Conclusion: learning and challenges

It is possible, although challenging to map global 
electricity access. This paper described the 
different, current methods to measure access. It 
highlighted that current survey-based methods 
tend to be sporadic, logistically complex and 
resource-intensive. The MTF effort offers a 
way to systematize survey-based approaches 
to measuring electricity access. There are also 
methods based on remote sensing data from 
satellites, which present their own unique 
technical challenges in terms of data processing 
and inference while offering higher spatial 
and temporal resolution. The work carried out 
by UNDP on electricity mapping has resulted 
in real progress on electricity mapping with 
high resolution. The following are key lessons 
learned during this process.

Global versus local estimates
One key implication from this work is the level 
at which estimates for electricity access are 
available to policymakers. Estimates based 
on satellite imagery, such as HREA and MLEE, 
can produce relatively up-to-date and high-
granularity estimates, which is useful to national 
and regional-level policymakers. Both methods 
also produce aggregate, global level estimates, 
which is important at the global policymaking 
level to ensure tracking and that adequate 
funding is sustained. The methods also generate 
estimates that can be relied on, as the validation 
exercise demonstrates, both locally and globally. 
Thus, tracking progress is an outcome of this 
work that can be reliably had.

What is important to note is that, despite high 
levels of agreement between the methods and 
validation data, different methodologies produce 
different sets of specific results on electricity 
access. Thus, HREA, MLEE and DHS, while 
broadly in agreement on subnational estimates 
of electricity access, are different in terms of their 
exact estimates for subnational units (Figure 
13). This is due to a number of factors. Satellite 
images have limitations such as cloud cover and 
local geophysical conditions, which introduce 
variation by country and over time for measures 
of both NTL and local settlement information. 
Next, current survey efforts, with the exemption 
of MTS, are not designed to capture estimates 
of access since their focus is on other categories 
of consumption. Finally, the estimation methods 
will improve as more data are made available 
and as underlying algorithms, technologies and 
methods evolve.  

Consequently, the choice of model that the 
policymaker uses will determine the estimates 
they have available for actual policy decisions. 
The way to address this challenge may require 
relying on a combination of methods. A 
combination of local knowledge (grid placement, 
electricity generation, local projects), surveys 
and satellite-based techniques will help local 
level policymakers focus on areas that most 
require attention. 
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Institutional collaboration
As documented in this report, several institutions 
are currently engaged in mapping estimates 
of global electricity access. These institutions 
use different methods and technologies, and 
have different scopes of work, although there is 
considerable overlap. Institutional collaborations 
offer a cost-effective way to leverage current 
efforts; they can add value by increasing them. 
This can be achieved by playing a coordinating 
and resourcing role, systematizing existing 
work, in three ways.

First, with the right institutional collaboration, 
efforts to map global electricity access can be 
made far more systematic, which therefore 
brings resources that enable the production of 
regular, high-resolution and globally harmonized 
estimates of electricity access. Some of the 
cutting-edge efforts are ad hoc and sporadic, 
often led by small academic and research 
teams, which can be leveraged by providing 
more resources and enabling them to grow.

Second, there is the real potential for growing 
and refining results with greater collaboration 
between upstream and downstream producers. 
Upstream producers include those that execute 
measurements and make datasets available, 
while downstream producers process these 
data to generate products centred around 
estimates of electricity access. For instance, 
Meta produces settlement and population 
datasets that are crucial to estimates of 
electricity access. Upstream collaboration with 
agencies that generate remote sensing data. In 
addition, working with downstream users, these 
datasets and map layers can be optimized to 
fit the purpose of estimating electricity access 
better.

Third, there is a distinct opportunity to bridge 
the two broad methods of electricity access 
estimation, i.e., survey-based and remote 
sensing-based methods. Both methods 
have their advantages, and there is space to 
integrate the two systematically so that they 
effectively complement each other to produce 
a higher quality of estimated results than either 
method would achieve individually. Therefore, 
institutional collaboration to bridge the two 
methods can serve to improve data quality.

For example, the institutional partnership 
between UNDP and collaborators from the 
University of Michigan allowed to produce a 
high-quality electricity access dataset with the 
means to visualize it. With resources mobilized by 
UNDP, HREA was extended to global coverage, 
updated to the present time and thoroughly 
validated. Hence, a systematic approach is now 
in place to continually generate electricity access 
estimates. Additionally, collaboration enabled 
building in-house capability in the domain of 
satellite-based electricity access estimation that 
used modern machine learning tools.

Lag
No current electricity access estimation 
procedure is real-time, including the work 
undertaken and described here. Thus, no 
current method provides local level electricity 
access estimates for the entire world in real time. 
However, the work described here comes very 
close, providing electricity access estimates for 
the last calendar year. This lag is a function of 
the frequency with which NTL data are made 
available and how quickly it can be processed 
to share. Thus, both how quickly the requisite 
VIIRS data are updated, and the computational 
capacity limit the ability to achieve real time 
estimates.
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Data production, storage and 
visualization
There was a need to ensure clarity in the output 
produced by the analytic work that generated 
local high-resolution electricity access data 
and the infrastructure that eventually absorbed 
these data (storage and visualization). The 
problem was relatively simultaneous since both 
the infrastructure and the input data (electricity 
access estimates) were evolving side-by-side. 
Good coordination was needed between the 
parties generating the data and those developing 
the storage and visualization infrastructure to 
ensure that everything was well-integrated. This 
essentially entailed regular contact between the 
teams working on this project and agreement 
on data formats. Moreover, the volumes of data 
involved are very large; therefore, substantial 
computational infrastructure was required to 
ensure adequate storage, processing and 
accessibility of all data by production staff and 
end-users. 

Next, ML procedures, as used for MLEE, for 
instance, require considerable time to train and 
optimize, although the time taken is dependent 
on the quality and resolution of source data. For 
example, when switching from a 1 km2 cell to 
100 m2 cell, the number of cells to be analysed 
increases by 10,000, which causes data storage 
size to also increase. 

Finally, visualizing electricity access data is 
nontrivial. It requires thoughtful choices on what 
users can do without overwhelming them. At 
the same time, visualization technologies are 
resource constrained and can produce a limited 
set of usable visualizations at a given point in 
time (i.e., at the time of user demand). The sheer 
difficulty of visualizing electricity mapping data 
stems from the remarkably high resolution of 
the datasets (30 m). This poses challenges on 
both sides – on the client side where the web 
browser can be overwhelmed by the number of 
pixels/geometries that need to be displayed at 

a certain scale, and on the server side where 
significant amounts of resources are required 
to fetch, aggregate and render the data. As a 
result, specific approaches are necessary to 
provide the users with consistent and effective 
visualizations, such as scale-based aggregation 
of data in the form of vector tiles, or advanced 
clustering scale dependent visualization 
algorithms such as heat maps. Finally rendering 
the data on the server side as images and serving 
them through web mapping is also a viable 
alternative. Usually, all the above enumerated 
methods need to be combined to produce 
satisfactory user experiences. However, to make 
the most of the data, the visualizations need to 
be dynamic so that users can change various 
parameters and obtain almost instant feedback 
and results, which is a challenge. 

These types of requirements are hard to 
implement and usually require time, expensive, 
commercial off-the-shelf (COTS) software boxes, 
specific dedicated hardware infrastructure and 
highly skilled personnel. This combination of 
factors can result in prohibitive costs for low-
income countries. Additionally, in some areas 
of the world, the lack of available highly skilled 
and specialized human resources can pose 
insurmountable problems and can lead to 
inefficient implementations. 



27

Validation
The core challenge with remote sensing data 
is validation. Both the HREA and MLEE use 
satellite-based settlement (population) and NTL 
data to generate electrification estimates, which 
creates challenges for validation. With survey-
based methods, both the number of people 
and their electrification status are verified by 
direct observation. Satellite data require ground 
truthing to verify them. Both the HREA and MLEE 
used existing micro and national-level electricity 
access figures to validate estimates that they 
generate. This goes beyond what any existing 
efforts have been made and goes a long way 
to ensuring that the estimates generated by 
HREA and MLEE can be relied on. However, in 
the long term, systematic global and national/
level ground truthing will need to be undertaken 
to ensure continued validation. As noted in 
section 5, HREA and MLEE estimates can differ 
at the subnational level. This is significant 
for a policymaker at the national level – the 
estimation tool they use may provide different 
local level estimates. The way to resolve this is 
coordinated data collection to enable systematic 
ground truthing and an opportunity for satellite-
based methods to learn as more data come in. 
In addition, globally aggregated values do not 
differ, thus global level policymaking can use 
results from satellite-based methods to track 
progress.
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